
Photos placed in 
horizontal position 
with even amount 

of white space
between photos 

and header

Photos placed in horizontal 
position 

with even amount of white 
space

between photos and header

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned 
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Memory Management 
Extensions for OpenMP 5.0
2017 CoE Performance Portability Meeting
Denver, Colorado, USA
August 21, 2017

Stephen Olivier
Center for Computing Research, SNL-NM

SAND2017-8969 PE



Outline

§ Core features (near completion)
§ OpenMP allocators
§ allocate directive and clause
§ omp_alloc() and omp_free() API routines for C/C++
§ Default allocator
§ declare alloc directive and omp_alloc.h

§ Additional features (less mature)
§ Memory spaces and traits
§ User-defined custom allocators
§ Fallback

2



OpenMP Allocators

§ Fundamental concept: object that fulfills allocation requests

§ Initially, choice of predefined allocators only:
§ Default
§ High capacity
§ Constant (read-only)
§ High bandwidth
§ Low latency
§ Team local

§ Mapping to actual system resources by the implementation
§ E.g., may map all or most to DDR

3



allocate Directive and Clause

§ Specifies that the OpenMP implementation will perform the 
memory allocation and indicates which allocator to use

§ Directive may be used either by itself or with an associated 
base language allocation statement
§ Syntax: #pragma omp allocate(var-list) \

[allocator(predef-allocator)] 

§ Clause may be used on parallel, task, target, and 
worksharing (e.g., loop) directives

§ deallocate directive for deallocation 
4



C/C++ API Routines

§ omp_alloc() call to allocate memory
§ Specify size and which allocator to use

§ omp_free() call to deallocate memory

§ Strong resemblance to malloc() and free()

5



Default Allocator

§ Default allocator used when an allocator is not specified on 
an allocation directive, clause, or API routine call

§ Separate target default allocator used only when the 
allocate clause appears on the target directive
§ Allows a different default for non-host allocations

§ API routines: set/get_omp_default_allocator()
and set/get_omp_target_default_allocator()

§ Environment variables: OMP_ALLOCATOR and 
OMP_TARGET_ALLOCATOR

6



declare alloc

§ Registers existing allocation functions with OpenMP

§ Specifies how to interpret the behavior of the function, its 
arguments, and its return value:
§ Allocation, reallocation, or deallocation behaviors
§ Size of allocation, pointer to allocation, error code

§ Example:
§ Given the function void* special_alloc(size_t size);

§ #pragma omp declare alloc (special_alloc) \
allocate(omp_return) size(omp_args[0]) 

7



omp_alloc.h header file

§ New header file to be delivered by implementations

§ Registers popular allocation functions with OpenMP using 
declare alloc directives:
§ malloc()

§ posix_memalign()

§ calloc()

§ aligned_alloc()

§ realloc()

§ free()

8



Future Features: Memory Spaces

§ Define memory spaces based on combinations of traits

§ Memory space traits span various dimensions, for example:
§ Location (core, socket, device)
§ Capacity and page size
§ Permissions (read, write, both)
§ Bandwidth, latency, or capacity

§ Example: device, read-only, low latency memory

9



Future Features: Custom Allocators

§ User-defined allocators express desired set of memory space 
traits

§ Implementation finds the memory space that best matches

§ Allocators have traits too: 
§ Alignment
§ Pinning
§ Shared/exclusive thread model
§ Fallback

10



Future Features: Fallback

§ Fallback allocator trait specifies what to do when a memory 
request cannot be satisfied

§ Fallback allocator trait options:
§ Return 0
§ Abort the program
§ Delegate to another specified allocator
§ Try in the default memory space

11



Other Future Features

§ Better support for C++

§ Explicit optimization for NUMA

§ Resource querying

§ Special code generation, as required on some new memories

§ Static (compile-time) allocator mappings

12



Other Contributors

§ Alex Duran (Intel) – Proposal Lead
§ Christian Terboven (RWTH Aachen) – OpenMP Affinity Chair
§ Deepak Eachempati and Jeff Sandoval (Cray)
§ Kelvin Li and Alex Eichenberger (IBM)
§ Alex Rico and Jonathan Beard (ARM)
§ John Pennycook, Jason Sewall, Xinmin Tian (Intel)
§ Ian Karlin, Tom Scogland, and Bronis de Supinski (LLNL)
§ Helen He and Alice Koniges (LBNL)
§ Kent Milfeld and Lars Koesterke (TACC)
§ <Your name here> -- Really, please give us feedback!

13


